Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

My NCBI Filters
Text availability
Article attribute
Article type
Publication date

Search Results

222 results
Filters applied: . Clear all Results are displayed in a computed author sort order. Results by year timeline is unavailable
Page 1
Evidence that catalysis by yeast inorganic pyrophosphatase proceeds by direct phosphoryl transfer to water and not via a phosphoryl enzyme intermediate.
Gonzalez MA, Webb MR, Welsh KM, Cooperman BS. Gonzalez MA, et al. Among authors: cooperman bs. Biochemistry. 1984 Feb 28;23(5):797-801. doi: 10.1021/bi00300a002. Biochemistry. 1984. PMID: 6143570
Evolutionary conservation of the active site of soluble inorganic pyrophosphatase.
Cooperman BS, Baykov AA, Lahti R. Cooperman BS, et al. Trends Biochem Sci. 1992 Jul;17(7):262-6. doi: 10.1016/0968-0004(92)90406-y. Trends Biochem Sci. 1992. PMID: 1323891 Review.
Single-turnover kinetics of Saccharomyces cerevisiae inorganic pyrophosphatase.
Halonen P, Baykov AA, Goldman A, Lahti R, Cooperman BS. Halonen P, et al. Among authors: cooperman bs. Biochemistry. 2002 Oct 8;41(40):12025-31. doi: 10.1021/bi026018z. Biochemistry. 2002. PMID: 12356302
Functional characterization of Escherichia coli inorganic pyrophosphatase in zwitterionic buffers.
Baykov AA, Hyytiä T, Turkina MV, Efimova IS, Kasho VN, Goldman A, Cooperman BS, Lahti R. Baykov AA, et al. Among authors: cooperman bs. Eur J Biochem. 1999 Mar;260(2):308-17. doi: 10.1046/j.1432-1327.1999.00181.x. Eur J Biochem. 1999. PMID: 10095764
Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity.
Pohjanjoki P, Lahti R, Goldman A, Cooperman BS. Pohjanjoki P, et al. Among authors: cooperman bs. Biochemistry. 1998 Feb 17;37(7):1754-61. doi: 10.1021/bi971771r. Biochemistry. 1998. PMID: 9485300
Trimeric inorganic pyrophosphatase of Escherichia coli obtained by directed mutagenesis.
Velichko IS, Mikalahti K, Kasho VN, Dudarenkov VY, Hyytiä T, Goldman A, Cooperman BS, Lahti R, Baykov AA. Velichko IS, et al. Among authors: cooperman bs. Biochemistry. 1998 Jan 13;37(2):734-40. doi: 10.1021/bi9714823. Biochemistry. 1998. PMID: 9425097
Structural and functional consequences of substitutions at the tyrosine 55-lysine 104 hydrogen bond in Escherichia coli inorganic pyrophosphatase.
Fabrichniy IP, Kasho VN, Hyytiä T, Salminen T, Halonen P, Dudarenkov VY, Heikinheimo P, Chernyak VY, Goldman A, Lahti R, Cooperman BS, Baykov AA. Fabrichniy IP, et al. Among authors: cooperman bs. Biochemistry. 1997 Jun 24;36(25):7746-53. doi: 10.1021/bi9629844. Biochemistry. 1997. PMID: 9201916
The structural basis for pyrophosphatase catalysis.
Heikinheimo P, Lehtonen J, Baykov A, Lahti R, Cooperman BS, Goldman A. Heikinheimo P, et al. Among authors: cooperman bs. Structure. 1996 Dec 15;4(12):1491-508. doi: 10.1016/s0969-2126(96)00155-4. Structure. 1996. PMID: 8994974
A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservation of the active site of soluble inorganic pyrophosphatases.
Heikinheimo P, Pohjanjoki P, Helminen A, Tasanen M, Cooperman BS, Goldman A, Baykov A, Lahti R. Heikinheimo P, et al. Among authors: cooperman bs. Eur J Biochem. 1996 Jul 1;239(1):138-43. doi: 10.1111/j.1432-1033.1996.0138u.x. Eur J Biochem. 1996. PMID: 8706698
Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties.
Volk SE, Dudarenkov VY, Käpylä J, Kasho VN, Voloshina OA, Salminen T, Goldman A, Lahti R, Baykov AA, Cooperman BS. Volk SE, et al. Among authors: cooperman bs. Biochemistry. 1996 Apr 16;35(15):4662-9. doi: 10.1021/bi952636m. Biochemistry. 1996. PMID: 8664255
222 results
You have reached the last page of results. A maximum of 10,000 results are available.
Jump to page