Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

My NCBI Filters
Text availability
Article attribute
Article type
Publication date

Search Results

5,437 results
Filters applied: . Clear all Results are displayed in a computed author sort order. Results by year timeline is unavailable
Page 1
Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
Kawahata M, Masaki K, Fujii T, Iefuji H. Kawahata M, et al. FEMS Yeast Res. 2006 Sep;6(6):924-36. doi: 10.1111/j.1567-1364.2006.00089.x. FEMS Yeast Res. 2006. PMID: 16911514
Effects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae.
Shobayashi M, Mitsueda S, Ago M, Fujii T, Iwashita K, Iefuji H. Shobayashi M, et al. Biosci Biotechnol Biochem. 2005 Dec;69(12):2381-8. doi: 10.1271/bbb.69.2381. Biosci Biotechnol Biochem. 2005. PMID: 16377897
Genome-wide expression profile of sake brewing yeast under shaking and static conditions.
Shobayashi M, Ukena E, Fujii T, Iefuji H. Shobayashi M, et al. Biosci Biotechnol Biochem. 2007 Feb;71(2):323-35. doi: 10.1271/bbb.60190. Epub 2007 Feb 7. Biosci Biotechnol Biochem. 2007. PMID: 17284864
Effects of accumulated S-adenosylmethionine on growth of yeast cells.
Shobayashi M, Fujii T, Iefuji H. Shobayashi M, et al. Biosci Biotechnol Biochem. 2007 Jun;71(6):1595-7. doi: 10.1271/bbb.70100. Biosci Biotechnol Biochem. 2007. PMID: 17587699
Intraspecies diversity of the industrial yeast strains Saccharomyces cerevisiae and Saccharomyces pastorianus based on analysis of the sequences of the internal transcribed spacer (ITS) regions and the D1/D2 region of 26S rDNA.
Kawahata M, Fujii T, Iefuji H. Kawahata M, et al. Biosci Biotechnol Biochem. 2007 Jul;71(7):1616-20. doi: 10.1271/bbb.60673. Epub 2007 Jul 7. Biosci Biotechnol Biochem. 2007. PMID: 17617725
Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway.
Kanai M, Masuda M, Takaoka Y, Ikeda H, Masaki K, Fujii T, Iefuji H. Kanai M, et al. Appl Microbiol Biotechnol. 2013 Feb;97(3):1183-90. doi: 10.1007/s00253-012-4261-3. Epub 2012 Jul 12. Appl Microbiol Biotechnol. 2013. PMID: 22790542
Statistical analysis of sake-preparation conditions and dimethyl trisulfide formation.
Sasaki K, Nishibori N, Kanai M, Isogai A, Yamada O, Goto-Yamamoto N, Fujii T. Sasaki K, et al. J Biosci Bioeng. 2014 Aug;118(2):166-71. doi: 10.1016/j.jbiosc.2014.01.005. Epub 2014 Feb 11. J Biosci Bioeng. 2014. PMID: 24525110
Yeast cell lysis enhances dimethyl trisulfide formation in sake.
Nishibori N, Sasaki K, Okimori Y, Kanai M, Isogai A, Yamada O, Fujii T, Goto-Yamamoto N. Nishibori N, et al. J Biosci Bioeng. 2014 Nov;118(5):526-8. doi: 10.1016/j.jbiosc.2014.04.010. Epub 2014 Jun 3. J Biosci Bioeng. 2014. PMID: 24932967
Sake yeast YHR032W/ERC1 haplotype contributes to high S-adenosylmethionine accumulation in sake yeast strains.
Kanai M, Kawata T, Yoshida Y, Kita Y, Ogawa T, Mizunuma M, Watanabe D, Shimoi H, Mizuno A, Yamada O, Fujii T, Iefuji H. Kanai M, et al. J Biosci Bioeng. 2017 Jan;123(1):8-14. doi: 10.1016/j.jbiosc.2016.07.007. Epub 2016 Aug 24. J Biosci Bioeng. 2017. PMID: 27567046
5,437 results
Jump to page
Feedback