Epigenetic regulation of cardiac electrophysiology in atrial fibrillation: HDAC2 determines action potential duration and suppresses NRSF in cardiomyocytes

Basic Res Cardiol. 2021 Feb 25;116(1):13. doi: 10.1007/s00395-021-00855-x.

Abstract

Atrial fibrillation (AF) is associated with electrical remodeling, leading to cellular electrophysiological dysfunction and arrhythmia perpetuation. Emerging evidence suggests a key role for epigenetic mechanisms in the regulation of ion channel expression. Histone deacetylases (HDACs) control gene expression through deacetylation of histone proteins. We hypothesized that class I HDACs in complex with neuron-restrictive silencer factor (NRSF) determine atrial K+ channel expression. AF was characterized by reduced atrial HDAC2 mRNA levels and upregulation of NRSF in humans and in a pig model, with regional differences between right and left atrium. In vitro studies revealed inverse regulation of Hdac2 and Nrsf in HL-1 atrial myocytes. A direct association of HDAC2 with active regulatory elements of cardiac K+ channels was revealed by chromatin immunoprecipitation. Specific knock-down of Hdac2 and Nrsf induced alterations of K+ channel expression. Hdac2 knock-down resulted in prolongation of action potential duration (APD) in neonatal rat cardiomyocytes, whereas inactivation of Nrsf induced APD shortening. Potential AF-related triggers were recapitulated by experimental tachypacing and mechanical stretch, respectively, and exerted differential effects on the expression of class I HDACs and K+ channels in cardiomyocytes. In conclusion, HDAC2 and NRSF contribute to AF-associated remodeling of APD and K+ channel expression in cardiomyocytes via direct interaction with regulatory chromatin regions. Specific modulation of these factors may provide a starting point for the development of more individualized treatment options for atrial fibrillation.

Keywords: Atrial fibrillation; Electrophysiology; Epigenetics; Histone deacetylase; K+ channel.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials*
  • Adult
  • Aged
  • Animals
  • Atrial Fibrillation / enzymology*
  • Atrial Fibrillation / genetics
  • Atrial Fibrillation / physiopathology
  • Atrial Remodeling
  • Case-Control Studies
  • Cell Line
  • Disease Models, Animal
  • Epigenesis, Genetic*
  • Female
  • Heart Atria / enzymology*
  • Heart Atria / physiopathology
  • Heart Rate*
  • Histone Deacetylase 2 / genetics
  • Histone Deacetylase 2 / metabolism*
  • Humans
  • Male
  • Middle Aged
  • Myocytes, Cardiac / enzymology*
  • Potassium Channels / genetics
  • Potassium Channels / metabolism*
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Sus scrofa
  • Time Factors

Substances

  • Potassium Channels
  • RE1-silencing transcription factor
  • Repressor Proteins
  • HDAC2 protein, human
  • Histone Deacetylase 2