Smart Sensing Using Electromagnetic Waves for Inspection of Defects in Rock Bolts

Sensors (Basel). 2020 May 15;20(10):2821. doi: 10.3390/s20102821.

Abstract

The stability of tunnels and rock slopes is adversely affected by defects in rock bolts. This study investigates the suitability of the smart sensing method using electromagnetic waves for inspecting defects in rock bolts. Experiments were performed with one fully grouted and eight defective rock bolts, out of which five have non-grouted parts at the ends with different non-grouted ratios, and three have different types of voids. Electromagnetic waves were generated and detected using a time domain reflectometer by configuring two-conductor transmission lines in the rock bolts. Results show that electromagnetic waves are reflected both at defects and ends of rock bolts. The electromagnetic wave velocity increases with an increase in the non-grouted ratio and decreases when rock bolts are embedded in a concrete block simulating rock mass. The estimated locations of defects found by electromagnetic waves are in good agreement with actual defect locations. This study demonstrates that smart sensing using electromagnetic waves is an effective method for inspecting and determining defect locations and the non-grouted ratio of rock bolts.

Keywords: defect; electromagnetic wave; nondestructive testing method; rock bolt; smart sensing.