Kinetic and structural parameters governing Fic-mediated adenylylation/AMPylation of the Hsp70 chaperone, BiP/GRP78

Cell Stress Chaperones. 2021 Jul;26(4):639-656. doi: 10.1007/s12192-021-01208-2. Epub 2021 May 3.

Abstract

Fic (filamentation induced by cAMP) proteins regulate diverse cell signaling events by post-translationally modifying their protein targets, predominantly by the addition of an AMP (adenosine monophosphate). This modification is called Fic-mediated adenylylation or AMPylation. We previously reported that the human Fic protein, HYPE/FicD, is a novel regulator of the unfolded protein response (UPR) that maintains homeostasis in the endoplasmic reticulum (ER) in response to stress from misfolded proteins. Specifically, HYPE regulates UPR by adenylylating the ER chaperone, BiP/GRP78, which serves as a sentinel for UPR activation. Maintaining ER homeostasis is critical for determining cell fate, thus highlighting the importance of the HYPE-BiP interaction. Here, we study the kinetic and structural parameters that determine the HYPE-BiP interaction. By measuring the binding and kinetic efficiencies of HYPE in its activated (Adenylylation-competent) and wild type (de-AMPylation-competent) forms for BiP in its wild type and ATP-bound conformations, we determine that HYPE displays a nearly identical preference for the wild type and ATP-bound forms of BiP in vitro and preferentially de-AMPylates the wild type form of adenylylated BiP. We also show that AMPylation at BiP's Thr366 versus Thr518 sites differentially affect its ATPase activity, and that HYPE does not adenylylate UPR accessory proteins like J-protein ERdJ6. Using molecular docking models, we explain how HYPE is able to adenylylate Thr366 and Thr518 sites in vitro. While a physiological role for AMPylation at both the Thr366 and Thr518 sites has been reported, our molecular docking model supports Thr518 as the structurally preferred modification site. This is the first such analysis of the HYPE-BiP interaction and offers critical insights into substrate specificity and target recognition.

Keywords: AMPylation; Adenylylation; BiP/GRP78; ER stress; FicD/HYPE; Hsp70; Post-translational modification; Unfolded protein response.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Monophosphate / metabolism
  • Endoplasmic Reticulum / metabolism
  • Endoplasmic Reticulum Chaperone BiP / metabolism*
  • HSP70 Heat-Shock Proteins / metabolism*
  • Humans
  • Molecular Docking Simulation / methods
  • Protein Processing, Post-Translational / physiology*
  • Unfolded Protein Response / physiology*

Substances

  • Endoplasmic Reticulum Chaperone BiP
  • HSP70 Heat-Shock Proteins
  • Adenosine Monophosphate