Integrated Analysis of Structural Variation and RNA Expression of FGFR2 and Its Splicing Modulator ESRP1 Highlight the ESRP1amp- FGFR2norm- FGFR2-IIIchigh Axis in Diffuse Gastric Cancer

Cancers (Basel). 2019 Dec 25;12(1):70. doi: 10.3390/cancers12010070.

Abstract

Gastric Cancer (GC) is one of the most common and deadliest types of cancer in the world. To improve GC prognosis, increasing efforts are being made to develop new targeted therapies. Although FGFR2 genetic amplification and protein overexpression in GC have been targeted in clinical trials, so far no improvement in patient overall survival has been found. To address this issue, we studied genetic and epigenetic events affecting FGFR2 and its splicing regulator ESRP1 in GC that could be used as new therapeutic targets or predictive biomarkers. We performed copy number variation (CNV), DNA methylation, and RNA expression analyses of FGFR2/ESRP1 across several cohorts. We discovered that both genes were frequently amplified and demethylated in GC, resulting in increased ESRP1 expression and of a specific FGFR2 isoform: FGFR2-IIIb. We also showed that ESRP1 amplification in GC correlated with a significant decreased expression of FGFR2-IIIc, an alternative FGFR2 splicing isoform. Furthermore, when we performed a survival analysis, we observed that patients harboring diffuse-type tumors with low FGFR2-IIIc expression revealed a better overall survival than patients with FGFR2-IIIc high-expressing diffuse tumors. Our results encourage further studies on the role of ESRP1 in GC and support FGFR2-IIIc as a relevant biomarker in GC.

Keywords: ESRP1; FGFR2; FGFR2-IIIb; FGFR2-IIIc; diffuse; gastric cancer.