Determination of binding points of methylene blue and cationic phenoxazine dyes on human butyrylcholinesterase

Arch Biochem Biophys. 2013 Apr 1;532(1):32-8. doi: 10.1016/j.abb.2013.01.003. Epub 2013 Jan 25.

Abstract

In this study, the binding points of MethB and two structurally-related cationic phenoxazine dyes [meldola blue (MB) and nile blue (NB)] to human butyrylcholinesterase (BChE) were investigated by molecular docking and site directed mutagenesis. The comparative inhibitory effects of MethB, MB and NB on recombinant wild type BChE and six human BChE mutants were spectrophotometrically studied. Kinetic analyses yielded the following information: MethB and MB were found to cause nonlinear inhibition of all recombinant BChEs except Y332A, compatible with a multi-site binding model. On the other hand, MethB and MB caused linear mixed inhibition of Y332A mutant, compatible with a single binding mode. Comparing the inhibitory effects in aspect of Ki values with recombinant wild type BChE (Ki=0.042 μM), MethB was found to be ∼30, 80 and 270-fold less effective as an inhibitor of Y332A, F329A and T120F, respectively. NB caused nonlinear inhibition of all recombinant BChEs. The inhibitory effect of NB on Y332A mutant was ∼370-fold lower, compared to recombinant wild type BChE (Ki=0.006 μM). Considering both kinetic and molecular docking results together, it was concluded that threonine 120, phenylalanine 329 and tyrosine 332 are critical amino acids in binding of cationic phenoxazine/phenothiazine structured ligands to human BChE.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / drug therapy
  • Alzheimer Disease / enzymology
  • Binding Sites
  • Butyrylcholinesterase / chemistry
  • Butyrylcholinesterase / genetics
  • Butyrylcholinesterase / metabolism*
  • Cholinesterase Inhibitors / pharmacology*
  • Coloring Agents / pharmacology*
  • HEK293 Cells
  • Humans
  • Methylene Blue / pharmacology*
  • Molecular Docking Simulation
  • Mutagenesis, Site-Directed
  • Oxazines / pharmacology*
  • Protein Binding
  • Recombinant Proteins / antagonists & inhibitors
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism

Substances

  • Cholinesterase Inhibitors
  • Coloring Agents
  • Oxazines
  • Recombinant Proteins
  • Nile Blue
  • Meldola blue
  • Butyrylcholinesterase
  • Methylene Blue