Performance of EOM-CCSD(T)(a)*-Based Quartic Force Fields in Computing Fundamental, Anharmonic Vibrational Frequencies of Molecular Electronically Excited States with Application to the Ã1A″ State of :CCH2 (Vinylidene)

J Phys Chem A. 2024 Mar 21;128(11):2150-2161. doi: 10.1021/acs.jpca.3c08168. Epub 2024 Mar 11.

Abstract

Highly accurate anharmonic vibrational frequencies of electronically excited states are not as easily computed as their ground electronic state counterparts, but recently developed approximate triple excited state methods may be changing that. One emerging excited state method is equation of motion coupled cluster theory at the singles and doubles level with perturbative triples computed via the (a)* formalism, EOMEE-CCSD(T)(a)*. One of the most employed means for the ready computation of vibrational anharmonic frequencies for ground electronic states is second-order vibrational perturbation theory (VPT2), a theory based on quartic force fields (QFFs),fourth-order Taylor series expansions of the potential portion of the internuclear Watson Hamiltonian. The combination of these two is herein benchmarked for its performance for use as a means of computing rovibrational spectra of electronically excited states. Specifically, the EOMEE-CCSD(T)(a)* approach employing a complete basis set extrapolation along with core electron inclusion and relativity (the so-called "CcCR" approach) defining the QFF produces anharmonic fundamental vibrational frequencies within 2.83%, on the average, of reported gas-phase experimentally assigned values for the test set including the A~1A states of HCF, HCCl, HSiF, HNO, and HPO. However, some states have exceptional accuracy in the fundamentals, most notably for ν2 of A~1A HCCl in which the CcCR QFF value is within 1.8 cm-1 at 927.9 cm-1 (or 0.2%) of the experiment. Additionally, this approach produces rotational constants to, on the absolute average, within 0.41% of available experimental data, showcasing notable accuracy in the computation of rovibronic spectral data. Furthermore, utilizing a hybrid approach composed of harmonic CcCR force constants along with a set of simple EOMEE-CCSD(T)(a)*/aug-cc-pVQZ QFF cubic and quartic force constants is faster than using pure CcCR and better represents those modes that suffer from numerical instability in the anharmonic portion of the QFF, implying that this so-called "CcCR + QZ" QFF approach may be the best for future applications. Finally, complete, rovibrational spectral data are provided for A~1A2 :CCH2, a molecule of potential astrochemical interest, in order to aid in its potential future experimental rovibronic characterization.