Allozyme diversity within and divergence among species ofTolpis(Asteraceae-Lactuceae) in the Canary Islands: systematic, evolutionary, and biogeographical implications

Am J Bot. 2006 Apr;93(4):656-64. doi: 10.3732/ajb.93.4.656.

Abstract

Plants endemic to oceanic islands represent some of the most unusual and rare taxa in the world. Enzyme electrophoresis was used to assess genetic diversity within and divergence among all endemic species of a small genus of plants on the Canary Islands. Our results show that the genus Tolpis is similar to many other island groups in having generally low allozyme divergence among species, with the highest divergence found among four groups of endemics. The two rare and highly localized species T. glabrescens and T. crassiuscula are each divergent from all other species in the Canaries. Tolpis coronopifolia is also divergent at allozyme loci; this is the only endemic species that is a self-compatible annual (or weak biennial). A large, morphologically variable species complex consisting of T. laciniata and T. lagopoda together with several named and unnamed morphological variants shows low allozyme divergence among its elements. The evolution of polyploidy from diploid ancestors in situ in oceanic archipelagos is uncommon, but the tetraploid T. glabrescens is an exception. Allozyme data do not implicate any extant diploid Tolpis species as parents of the polyploid. It is possible that T. glabrescens originated early in the evolution of Tolpis in the Canary Islands and that its parents are now extinct. The nonendemic T. barbata shows no greater divergence from the Canary Island endemics than some endemics exhibit among themselves. Both changes in allele frequencies and unique alleles are responsible for genetic divergence among species of Tolpis.