Engineering Klebsiella sp. 601 multicopper oxidase enhances the catalytic efficiency towards phenolic substrates

BMC Biochem. 2011 May 31:12:30. doi: 10.1186/1471-2091-12-30.

Abstract

Background: Structural comparison between bacterial CueO and fungal laccases has suggested that a charged residue Glu (E106) in CueO replaces the corresponding residue Phe in fungal laccases at the gate of the tunnel connecting type II copper to the protein surface and an extra α-helix (L351-G378) near the type I copper site covers the substrate binding pocket and might compromise the electron transfer from substrate to type I copper. To test this hypothesis, several mutants were made in Klebsiella sp. 601 multicopper oxidase, which is highly homologous to E. coli CueO with a similarity of 90% and an identity of 78%.

Results: The E106F mutant gave smaller K(m) (2.4-7 fold) and k(cat) (1-4.4 fold) values for all three substrates DMP, ABTS and SGZ as compared with those for the wild-type enzyme. Its slightly larger k(cat)/K(m) values for three substrates mainly come from the decreased K(m). Deleting α-helix (L351-G378) resulted in the formation of inactive inclusion body when the mutant (Δ)α351-378 was expressed in E. coli. Another mutant α351-380M was then made via substitution of seven amino acid residues in the α-helix (L351-G378) region. The α351-380M mutant was active, and displayed a far-UV CD spectrum markedly different from that for wild-type enzyme. Kinetic studies showed the α351-380M mutant gave very low K(m) values for DMP, ABTS and SGZ, 4.5-, 1.9- and 7-fold less than those for the wild type. In addition, k(cat)/K(m) values were increased, 9.4-fold for DMP, similar for ABTS and 3-fold for SGZ.

Conclusion: The Glu residue at position 106 appears not to be the only factor affecting the copper binding, and it may also play a role in maintaining enzyme conformation. The α-helix (L351-G378) may not only block access to the type I copper site but also play a role in substrate specificities of bacterial MCOs. The α351-380M mutant catalyzing oxidation of the phenolic substrate DMP effectively would be very useful in green chemistry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Biocatalysis*
  • Copper / metabolism
  • Kinetics
  • Klebsiella / enzymology*
  • Models, Molecular
  • Molecular Sequence Data
  • Mutation
  • Oxidoreductases / chemistry
  • Oxidoreductases / genetics*
  • Oxidoreductases / isolation & purification
  • Oxidoreductases / metabolism*
  • Phenols / metabolism*
  • Protein Engineering*
  • Protein Structure, Secondary

Substances

  • Phenols
  • Copper
  • Oxidoreductases
  • copper oxidase