Regulation of the let-7a-3 promoter by NF-κB

PLoS One. 2012;7(2):e31240. doi: 10.1371/journal.pone.0031240. Epub 2012 Feb 13.

Abstract

Changes in microRNA expression have been linked to a wide array of pathological states. However, little is known about the regulation of microRNA expression. The let-7 microRNA is a tumor suppressor that inhibits cellular proliferation and promotes differentiation, and is frequently lost in tumors. We investigated the transcriptional regulation of two let-7 family members, let-7a-3 and let-7b, which form a microRNA cluster and are located 864 bp apart on chromosome 22q13.31. Previous reports present conflicting data on the role of the NF-κB transcription factor in regulating let-7. We cloned three fragments upstream of the let-7a-3/let-7b miRNA genomic region into a plasmid containing a luciferase reporter gene. Ectopic expression of subunits of NF-κB (p50 or p65/RelA) significantly increased luciferase activity in HeLa, 293, 293T and 3T3 cells, indicating that the let-7a-3/let-7b promoter is highly responsive to NF-κB. Mutation of a putative NF-κB binding site at bp -833 reduced basal promoter activity and decreased promoter activity in the presence of p50 or p65 overexpression. Mutation of a second putative binding site, at bp -947 also decreased promoter activity basally and in response to p65 induction, indicating that both sites contribute to NF-κB responsiveness. While the levels of the endogenous primary let-7a and let-7b transcript were induced in response to NF-κB overexpression in 293T cells, the levels of fully processed, mature let-7a and let-7b miRNAs did not increase. Instead, levels of Lin-28B, a protein that blocks let-7 maturation, were induced by NF-κB. Increased Lin-28B levels could contribute to the lack of an increase in mature let-7a and let-7b. Our results suggest that the final biological outcome of NF-κB activation on let-7 expression may vary depending upon the cellular context. We discuss our results in the context of NF-κB activity in repressing self-renewal and promoting differentiation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Binding Sites
  • Cell Line
  • Gene Expression Regulation*
  • Humans
  • Mice
  • MicroRNAs / genetics
  • MicroRNAs / physiology*
  • NF-kappa B / genetics
  • NF-kappa B / physiology*
  • Promoter Regions, Genetic*
  • RNA-Binding Proteins

Substances

  • Lin28A protein, human
  • MicroRNAs
  • NF-kappa B
  • RNA-Binding Proteins
  • mirnlet7 microRNA, human
  • mirnlet7 microRNA, mouse