Nonrigid point registration for 2D curves and 3D surfaces and its various applications

Phys Med Biol. 2013 Jun 21;58(12):4315-30. doi: 10.1088/0031-9155/58/12/4315. Epub 2013 Jun 4.

Abstract

A nonrigid B-spline-based point-matching (BPM) method is proposed to match dense surface points. The method solves both the point correspondence and nonrigid transformation without features extraction. The registration method integrates a motion model, which combines a global transformation and a B-spline-based local deformation, into a robust point-matching framework. The point correspondence and deformable transformation are estimated simultaneously by fuzzy correspondence and by a deterministic annealing technique. Prior information about global translation, rotation and scaling is incorporated into the optimization. A local B-spline motion model decreases the degrees of freedom for optimization and thus enables the registration of a larger number of feature points. The performance of the BPM method has been demonstrated and validated using synthesized 2D and 3D data, mouse MRI and micro-CT images. The proposed BPM method can be used to register feature point sets, 2D curves, 3D surfaces and various image data.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging
  • Mice
  • Photochemotherapy
  • Surface Properties
  • Whole Body Imaging
  • X-Ray Microtomography