Fitting C² continuous parametric surfaces to frontiers delimiting physiologic structures

Comput Math Methods Med. 2014:2014:278479. doi: 10.1155/2014/278479. Epub 2014 Mar 24.

Abstract

We present a technique to fit C(2) continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C(2) continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C(2) continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C(2) continuous.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Animals
  • Computer Simulation
  • Heart Ventricles / diagnostic imaging*
  • Mice
  • Models, Anatomic
  • Models, Statistical
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Software
  • Tomography, X-Ray Computed / methods*