Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE-/- Mice

J Oncol. 2021 Apr 17:2021:6629204. doi: 10.1155/2021/6629204. eCollection 2021.

Abstract

Chronic inflammation plays an essential role in the pathogenesis of abdominal aortic aneurysm (AAA), a progressive segmental abdominal aortic dilation. Chemerin, a multifunctional adipocytokine, is mainly generated in the liver and adipose tissue. The combination of chemerin and chemokine-like receptor 1 (CMKLR1) has been demonstrated to promote the progression of atherosclerosis, arthritis diseases, and Crohn's disease. However, chemerin-9 acts as an analog of chemerin to exert an anti-inflammatory effect by binding to CMKLR1. Here, we first demonstrated that AAA exhibited higher levels of chemerin and CMKLR1 expression compared with the normal aortic tissues. Hence, we hypothesized that the chemerin/CMKLR1 axis might be involved in AAA progression. Moreover, we found that chemerin-9 treatment markedly suppressed inflammatory cell infiltration, neovascularization, and matrix metalloproteinase (MMP) expression, while increasing the elastic fibers and smooth muscle cells (SMCs) in Ang II-induced AAA in ApoE-/- mice. This demonstrated that chemerin-9 could inhibit AAA formation. Collectively, our findings indicate a potential mechanism underlying AAA progression and suggest that chemerin-9 can be used therapeutically.