Gene duplication and subsequent diversification strongly affect phenotypic evolvability and robustness

R Soc Open Sci. 2021 Jun 23;8(6):201636. doi: 10.1098/rsos.201636.

Abstract

We study the effects of non-determinism and gene duplication on the structure of genotype-phenotype (GP) maps by introducing a non-deterministic version of the Polyomino self-assembly model. This model has previously been used in a variety of contexts to model the assembly and evolution of protein quaternary structure. Firstly, we show the limit of the current deterministic paradigm which leads to built-in anti-correlation between evolvability and robustness at the genotypic level. We develop a set of metrics to measure structural properties of GP maps in a non-deterministic setting and use them to evaluate the effects of gene duplication and subsequent diversification. Our generalized versions of evolvability and robustness exhibit positive correlation for a subset of genotypes. This positive correlation is only possible because non-deterministic phenotypes can contribute to both robustness and evolvability. Secondly, we show that duplication increases robustness and reduces evolvability initially, but that the subsequent diversification that duplication enables has a stronger, inverse effect, greatly increasing evolvability and reducing robustness relative to their original values.

Keywords: Polyomino; gene duplication; genotype–phenotype map; self-assembly.