Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training

Int J Sports Physiol Perform. 2016 Mar;11(2):267-72. doi: 10.1123/ijspp.2015-0638. Epub 2015 Dec 17.

Abstract

Recent studies have brought new insights into the evaluation of power-force-velocity profiles in both ballistic push-offs (eg, jumps) and sprint movements. These are major physical components of performance in many sports, and the methods the authors developed and validated are based on data that are now rather simple to obtain in field conditions (eg, body mass, jump height, sprint times, or velocity). The promising aspect of these approaches is that they allow for more individualized and accurate evaluation, monitoring, and training practices, the success of which is highly dependent on the correct collection, generation, and interpretation of athletes' mechanical outputs. The authors therefore wanted to provide a practical vade mecum to sports practitioners interested in implementing these power-force-velocity-profiling approaches. After providing a summary of theoretical and practical definitions for the main variables, the authors first detail how vertical profiling can be used to manage ballistic push-off performance, with emphasis on the concept of optimal force-velocity profile and the associated force-velocity imbalance. Furthermore, they discuss these same concepts with regard to horizontal profiling in the management of sprinting performance. These sections are illustrated by typical examples from the authors' practice. Finally, they provide a practical and operational synthesis and outline future challenges that will help further develop these approaches.

MeSH terms

  • Athletes
  • Athletic Performance / physiology*
  • Biomechanical Phenomena
  • Exercise Test
  • Humans
  • Muscle Strength / physiology*
  • Running / physiology
  • Sports / physiology*