Safety evaluation of human living skin equivalents

Toxicol Pathol. 1999 Jan-Feb;27(1):101-3. doi: 10.1177/019262339902700118.

Abstract

Human living skin equivalents (LSEs) offer an alternative to the use of split-thickness autografts for the treatment of hard-to-heal wounds. LSEs consist of 4 active components: a well-differentiated stratum corneum derived from epidermal keratinocytes, dermal fibroblasts, and an extracellular collagen matrix. Neonatal foreskins are used as the source of keratinocytes and dermal fibroblasts for the manufacture of LSEs. Following isolation and expansion in vitro, the cells are cultured on a 3-dimensional scaffold to give an upper epidermal layer and supporting dermal layer. The resulting product has the appearance and handling characteristics of human skin. Safety evaluation of LSEs begins with insuring that foreskins are obtained only from healthy infants whose mothers are negative for a panel of adventitious agents. Keratinocyte and fibroblast cell banks are characterized using morphologic, biochemical, and histologic criteria; checked for the absence of contaminating cell types such as melanocytes, macrophages, lymphocytes, and Langerhans cells; subjected to rigorous microbiological testing (with any production materials of biological origin); and evaluated for in vivo tumorigenicity. The consistency of certain key morphologic and functional characteristics are regularly assessed. Because an LSE represents an allogeneic graft, preclinical safety studies include in vitro and in vivo determinations of its potential immunogenicity. Immunocompromised (SCID) mice reconstituted with human leukocytes or engrafted with human fetal hematolymphoid organs have been useful animal models for assessing possible immunologic responses to LSEs. Additional preclinical studies are being conducted to show that LSEs are noncytotoxic and lack allergenic, sensitizing, or irritation potential.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Skin, Artificial / adverse effects*
  • Skin, Artificial / microbiology