Application of dynamic computed tomography for measurements of local aortic elastic modulus

Med Biol Eng Comput. 1999 Jan;37(1):13-24. doi: 10.1007/BF02513260.

Abstract

A novel computed tomographic (CT) technique used for the instantaneous measurement of the dynamic elastic modulus of intact excised porcine aortic vessels subjected to physiological pressure waveforms is described. This system was comprised of a high resolution X-ray image intensifier based computed tomographic system with limiting spatial resolution of 3.2 mm-1 (for a 40 mm field of view) and a computer-controlled flow simulator. Utilising cardiac gating and computer control, a time-resolved sequence of 1 mm thick axial tomographic slices was obtained for porcine aortic specimens during one simulated cardiac cycle. With an image acquisition sampling interval of 16.5 ms, the time sequences of CT slices were able to quantify the expansion and contraction of the aortic wall during each phase of the cardiac cycle. Through superficial tagging of the adventitial surface of the specimens with wire markers, measurement of wall strain in specific circumferential sectors and subsequent calculations of localised dynamic elastic modulus were possible. The precision of circumferential measurements made from the CT images utilising a cluster-growing segmentation technique was approximately +/- 0.25 mm and allowed determination of the dynamic elastic modulus E(dyn) with a precision of +/- 8 kPa. Dynamic elastic modulus was resolved as a function of the harmonics of the physiological pressure waveform and as a function of the angular position around the vessel circumference. Application of this dynamic CT (DCT) technique to seven porcine thoracic aortic specimens produced a circumferential average (over all frequency components) E(dyn) of 373 +/- 29 kPa. This value was not statistically different (p < 0.05) from the values of 430 +/- 77 and 390 +/- 47 kPa obtained by uniaxial tensile testing and volumetric measurements respectively.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / physiology*
  • Aortography
  • Computational Biology
  • Elasticity
  • Materials Testing
  • Models, Biological
  • Radiographic Image Enhancement / methods*
  • Swine
  • Tomography, X-Ray Computed / methods*