Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation

Life Sci. 1999;65(4):355-68. doi: 10.1016/s0024-3205(99)00257-x.

Abstract

PEG modification (PEGylation) has been shown to reduce immunogenicity and prolong circulating half-life of proteins. In the present study, site-directed PEGylation was used to reduce immunogenicity and prolong plasma half-life of trichosanthin (TCS). Four TCS mutants, i.e. S7C, Q219C, K173C and [K173C,Q219C] (KQ), were constructed by site-directed mutagenesis. PEG modifications were done by reacting PEG5k-maleimide or PEG20k-maleimide reagent with the newly introduced cysteine residue of the mutants. The plasma clearance rate of PEGylated TCS mutants decreased up to 100-fold and the decrease was inversely proportional to the effective molecular size. The in vitro activities such as ribosome-inactivating activity and cytotoxicity were also decreased. However, the in vivo abortifacient activity was, slightly decreased, unchanged, or even enhanced in some preparations. PEG5k modification had little effect on immunogenicity. However, PEG20k modification significantly reduced immunogenicity. All PEG20k modified TCS mutants induced lower level IgG and IgE antibodies. In particular, PEG20k-KQ and PEG20k-K173C induced weaker systemic anaphylaxis reaction in guinea pigs. In conclusion, the present results suggest that PEG20k is better than PEG5k for reducing immunogenicity and prolonging plasma half-life. The conjugate can become a better therapeutic agent.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaphylaxis / prevention & control*
  • Animals
  • Anti-HIV Agents / pharmacokinetics
  • Anti-HIV Agents / pharmacology*
  • Antineoplastic Agents, Phytogenic / pharmacokinetics
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Cell Survival / drug effects
  • Electrophoresis, Polyacrylamide Gel
  • Female
  • Guinea Pigs
  • Half-Life
  • Humans
  • Immunoglobulin E / blood
  • Immunoglobulin G / blood
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mutagenesis, Site-Directed*
  • Polyethylene Glycols / pharmacology*
  • Pregnancy
  • Rats
  • Rats, Sprague-Dawley
  • Ribosomes / drug effects*
  • Structure-Activity Relationship
  • Trichosanthin / pharmacokinetics
  • Trichosanthin / pharmacology*
  • Tumor Cells, Cultured / drug effects

Substances

  • Anti-HIV Agents
  • Antineoplastic Agents, Phytogenic
  • Immunoglobulin G
  • Immunoglobulin E
  • Polyethylene Glycols
  • Trichosanthin