Ganglion cell losses underlying visual field defects from experimental glaucoma

Invest Ophthalmol Vis Sci. 1999 Sep;40(10):2242-50.

Abstract

Purpose: To investigate the relationship between ganglion cell losses and visual field defects caused by glaucoma.

Methods: Behavioral perimetry and histology data were obtained from 10 rhesus monkeys with unilateral experimental glaucoma that was induced by argon laser treatments to their trabecular meshwork. After significant visual field defects had developed, the retinas were collected for histologic analysis. The ganglion cells were counted by light microscopy in cresyl violet-stained retina sections, and the percentage of ganglion cell loss (treated to control eye counts) was compared with the depth of visual field defect (treated to control eye thresholds) at corresponding retinal and perimetry test locations. Sensitivity losses as a function of ganglion cell losses were analyzed for Goldmann III, white and Goldmann V, and short- and long-wavelength perimetry test stimuli.

Results: The relationship between the proportional losses of ganglion cells and visual sensitivity, measured with either white or colored stimuli, was nonlinear. With white stimuli, the visual sensitivity losses were relatively constant (approximately 6 dB) for ganglion cell losses of less than 30% to 50%, and then with greater amounts of cell loss the visual defects were more systematically related to ganglion cell loss (approximately 0.42 dB/percent cell loss). The forms of the neural-sensitivity relationships for visual defects measured with short- or long-wavelength perimetry stimuli were similar when the visual thresholds were normalized to compensate for differences in expected normal thresholds for white and colored perimetry stimuli.

Conclusions: Current perimetry regimens with either white or monochromatic stimuli do not provide a useful estimate of ganglion cell loss until a substantial proportion have died. The variance in ganglion cell loss is large for mild defects that would be diagnostic of early glaucoma and for visual field locations near the fovea where sensitivity losses occur relatively late in the disease process. The neural-sensitivity relationships were essentially identical for both white and monochromatic test stimuli, and it therefore seems unlikely that the higher sensitivity for detecting glaucoma with monochromatic stimuli is based on the size-dependent susceptibility of ganglion cells to injury from glaucoma.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Count
  • Disease Models, Animal
  • Glaucoma / complications*
  • Glaucoma / diagnosis
  • Laser Therapy
  • Macaca mulatta
  • Male
  • Retinal Ganglion Cells / pathology*
  • Trabecular Meshwork / surgery
  • Vision Disorders / diagnosis
  • Vision Disorders / etiology*
  • Visual Field Tests
  • Visual Fields*