The role of metabotropic glutamate receptor (mGluR) ligands in parkinsonian muscle rigidity

Amino Acids. 2000;19(1):95-101. doi: 10.1007/s007260070038.

Abstract

It has been shown that the primary striatal dopaminergic hypofunction which is at the origin of Parkinson's disease, results in a secondary hyperactivity of glutamatergic neurotransmission. In the search for a therapy of Parkinson's disease, ionotropic, mainly NMDA, receptor antagonists were found to have moderately beneficial, yet also some undesirable side-effects. Therefore the present study was aimed at determining whether some metabotropic glutamate receptor (mGluR) ligands may have antiparkinsonian effects in the haloperidol-induced muscle rigidity. To this end three mGluR ligands were used: the potent and selective mGluR I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), the mixed group II agonist/ group I antagonist (S)-4-carboxy-3-hydroxyphenyl-glycine ((S)-4-C3HPG), and the potent group II agonist (+)-2-aminobicyclo[3.1.0.]hexane-2,6,-dicarboxylic acid (LY354740). Only LY354740 penetrated the brain from the periphery; for this reason other drugs were injected bilaterally into the rostral striatum or nucleus accumbens. The muscle tone was recorded by a mechanomyographic/electromyographic (MMG/EMG) method which measured the resistance of a rat's hind foot and the EMG reflex response of its muscles to passive movements. (S)-4C3HPG (5 and 15 microg/0.5 microl) and LY354740 (5 and 10mg/kg i.p.) diminished the muscle rigidity induced by haloperidol (1 mg/kg i.p.). AIDA (0.5-15 microg/0.5 microl) injected into the striatum was only slightly effective in the highest dose used. However, when injected into the nucleus accumbens AIDA (15microg/0.5microl) significantly and strongly counteracted the haloperidol-induced muscle rigidity. Our results suggest that stimulation of group II striatal mGluRs seems to play a major role in diminution of parkinsonian-like muscle rigidity. However, it seems that the antagonism of group I mGluRs located in the nucleus accumbens may also be of importance to the antiparkinsonian effect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bridged Bicyclo Compounds / pharmacology
  • Electromyography
  • Glycine / analogs & derivatives*
  • Glycine / pharmacology
  • Ligands
  • Male
  • Muscle Rigidity / physiopathology*
  • Parkinson Disease / physiopathology*
  • Rats
  • Rats, Wistar
  • Receptors, Metabotropic Glutamate / drug effects
  • Receptors, Metabotropic Glutamate / metabolism
  • Receptors, Metabotropic Glutamate / physiology*

Substances

  • Bridged Bicyclo Compounds
  • Ligands
  • Receptors, Metabotropic Glutamate
  • 4-carboxy-3-hydroxyphenylglycine
  • eglumetad
  • Glycine