Synthesis of a stable and specific surface plasmon resonance biosensor surface employing covalently immobilized peptide nucleic acids

Bioconjug Chem. 2000 Nov-Dec;11(6):749-54. doi: 10.1021/bc0000029.

Abstract

Biosensors allow the real-time and label-free observation of biochemical reactions between various ligands including antigen-antibody reactions and nucleic acids hybridizations. In our studies, we used a surface plasmon resonance biosensor to elucidate the hybridization characteristics of a peptide nucleic acid (PNA) ligand immobilized on sensor surfaces either through covalent or streptavidin-biotin coupling. A biotin-labeled PNA was employed in the latter approach whereas the covalent immobilization included the following steps: A maleimide group was attached to the N-terminal of the PNA using N-succinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC). To generate free thiol groups for coupling, a carboxylated dextran matrix of the sensor surface was activated with N-hydroxysuccinimide (NHS) and N-ethyl-N'-(dimethylaminopropyl)-carbodiimide (EDC) and thiolated by addition of cystamine dihydrochloride followed by reduction with 1, 4-dithioerythrite (DTE). Finally, the modified PNA was coupled to the sulfhydryl groups of the activated dextran matrix. Repetitive hybridizations of a single-stranded synthetic DNA oligomer to the PNAs demonstrated the superior stability of covalent immobilization compared to noncovalent immobilization. Differentiation of point mutations in the analyte molecule was accomplished at 40 degrees C using guanidine thiocyanate concentrations of 1.5-1.7 M. In further experiments, we showed that a perfectly matched PNA allows the detection of a single-stranded DNA at a sensitivity of less than 1% in a background of single-stranded DNA having a single C to T point mutation in the region complementary to the PNA. Consequently, covalently bound PNAs provide a stable and reproducible environment for the development of mutation-specific DNA analysis assays.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Biosensing Techniques*
  • DNA Primers
  • Nucleic Acid Hybridization
  • Peptide Nucleic Acids / chemistry*
  • Surface Plasmon Resonance

Substances

  • DNA Primers
  • Peptide Nucleic Acids