Contribution of the nido-[7,8-C2B9H10]- anion to the chemical stability, basicity, and 31P NMR chemical shift in nido-o-carboranylmonophosphines

Inorg Chem. 2001 May 21;40(11):2587-94. doi: 10.1021/ic000858p.

Abstract

The icosahedral dicarboranes and their decapitated anion, 1-R'-1,2-C(2)B(10)H(10) (closo) and [7-R'-7,8-C(2)B(9)H(10)](-) (nido), exert a distict influence at the alpha position of substituents attached to the cage carbon atom. The closo fragment is electron-withdrawing while the nido anion is electron-releasing. These effects are studied by (31)P NMR, phosphorus oxidation, and phosphorus protonation in [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-) species. The (31)P NMR chemical shift dependence is related to the R alkyl or aryl nature of [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-). No direct relationship to the nature of the R substituent on the nido-carboranylmonphosphine toward oxidation has been found. The basicity of the nido-alkylcarboranylmonophosphines is the highest while the lowest corresponds to the nido-arylcarboranylmonophosphines. Interpretation can be carried out qualitatively by considering the electronic properties of the cluster and the nature of the R groups. The influence of R' is less relevant. Confirmation of the molecular structure of the oxidated and protonated nido-carboranylmonophosphine compounds was obtained by X-ray diffraction analysis of [NBu(4)][7-P(O)Ph(2)-8-Ph-7,8-C(2)B(9)H(10)] and [7-PH((i)Pr)(2)-8-Me-7,8-C(2)B(9)H(10)].