Photocurrent generation in multilayer organic-inorganic thin films with cascade energy architectures

J Am Chem Soc. 2002 May 1;124(17):4796-803. doi: 10.1021/ja011700m.

Abstract

Zirconium organobisphosphonate multilayer thin films of viologen derivatives were grown on copper dithiolate multilayers of 5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)porphyrin (POR) and 5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)porphyrinzinc (ZOR) on a variety of substrates (e.g. Au, SiO(2)), using solution depositions methods. The multilayer structures were studied by atomic force microscopy, UV-vis spectroscopy, and ellipsometry. In the case of copper dithiolate thin films, layer-by-layer lamellar growth with low surface roughness resulted, while higher surface roughness was observed in the growth of Zr viologen bisphosphonate films. Gold electrodes modified with zirconium bisphosphonate multilayers of viologen on top of copper dithiolate multilayers of porphyrin derivatives (ZOR or POR) were photoelectroactive and produced efficient and stable photocurrents using visible light. By arranging the zinc-porphyrin (ZOR) and the free base porphyrin (POR) donors in an energetically favorable fashion, according to their redox potentials and optical energy gaps, the photoinduced charge separation was improved, and higher photocurrent quantum yields ( approximately 4%) and fill factor ( approximately 50%) of the photoelectrode were achieved.