Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere

Mol Biol Cell. 2002 Oct;13(10):3369-87. doi: 10.1091/mbc.e02-05-0259.

Abstract

The von Willebrand A (VWA) domain is a well-studied domain involved in cell adhesion, in extracellular matrix proteins, and in integrin receptors. A number of human diseases arise from mutations in VWA domains. We have analyzed the phylogenetic distribution of this domain and the relationships among approximately 500 proteins containing this domain. Although the majority of VWA-containing proteins are extracellular, the most ancient ones, present in all eukaryotes, are all intracellular proteins involved in functions such as transcription, DNA repair, ribosomal and membrane transport, and the proteasome. A common feature seems to be involvement in multiprotein complexes. Subsequent evolution involved deployment of VWA domains by Metazoa in extracellular proteins involved in cell adhesion such as integrin beta subunits (all Metazoa). Nematodes and chordates separately expanded their complements of extracellular matrix proteins containing VWA domains, whereas plants expanded their intracellular complement. Chordates developed VWA-containing integrin alpha subunits, collagens, and other extracellular matrix proteins (e.g., matrilins, cochlin/vitrin, and von Willebrand factor). Consideration of the known properties of VWA domains in integrins and extracellular matrix proteins allows insights into their involvement in protein-protein interactions and the roles of bound divalent cations and conformational changes. These allow inferences about similar functions in novel situations such as protease regulators (e.g., complement factors and trypsin inhibitors) and intracellular proteins (e.g., helicases, chelatases, and copines).

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Adhesion / physiology*
  • Cell Adhesion Molecules / chemistry
  • Cell Adhesion Molecules / classification
  • Cell Adhesion Molecules / genetics
  • Databases, Protein
  • Evolution, Molecular*
  • Extracellular Matrix Proteins / chemistry
  • Extracellular Matrix Proteins / classification
  • Extracellular Matrix Proteins / genetics
  • Fungal Proteins / chemistry
  • Fungal Proteins / classification
  • Fungal Proteins / genetics
  • Humans
  • Integrin alpha Chains / chemistry*
  • Integrin alpha Chains / genetics
  • Integrin beta Chains / chemistry
  • Integrin beta Chains / metabolism
  • Membrane Proteins / chemistry
  • Membrane Proteins / classification
  • Membrane Proteins / genetics
  • Phylogeny
  • Plant Proteins / chemistry
  • Plant Proteins / classification
  • Plant Proteins / genetics
  • Protein Structure, Tertiary*
  • von Willebrand Factor / chemistry*
  • von Willebrand Factor / genetics

Substances

  • Cell Adhesion Molecules
  • Extracellular Matrix Proteins
  • Fungal Proteins
  • Integrin alpha Chains
  • Integrin beta Chains
  • Membrane Proteins
  • Plant Proteins
  • von Willebrand Factor