Activation of metallothioneins and alpha-crystallin/sHSPs in human lens epithelial cells by specific metals and the metal content of aging clear human lenses

Invest Ophthalmol Vis Sci. 2003 Feb;44(2):672-9. doi: 10.1167/iovs.02-0018.

Abstract

Purpose: To identify those metallothionein and alpha-crystallin/small heat-shock genes induced by toxic metals in human lens cells and to evaluate the levels of these metals between young and aged human lenses.

Methods: Human SRA01/04 and primary human lens epithelial cells were cultured and exposed to Cd(2+), Cu(2+), and Zn(2+). The levels of lens metallothioneins (Ig, If, Ih, Ie, and IIa) and alpha-crystallin/small heat-shock (alphaA-crystallin, alphaB-crystallin, and HSP27) genes were analyzed by semiquantitative and quantitative competitive RT-PCR. The content of aluminum, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, and zinc in young (mean, 32.8 years), middle-aged (mean, 52.3 years), and old (mean, 70.5 years) human lenses was analyzed by inductively coupled plasma-emission spectroscopy.

Results: Lens metallothioneins (Ig, If, Ih, Ie, and IIa) and alpha-crystallin/small heat-shock genes (alphaA-crystallin, alphaB-crystallin, and HSP27) were differentially induced by specific metals in SRA01/04 human lens epithelial cells. Cd(2+) and Zn(2+), but not Cu(2+), induced the metallothioneins, whereas Cd(2+) and Cu(2+), but not Zn(2+), induced alphaB-crystallin and HSP27. alphaA-crystallin was induced by Cu(2+) only. Similar responses of the metallothionein IIa gene were detected in identically treated primary human lens epithelial cells. Cd(2+) and Zn(2+) induced metallothionein IIa to five times higher levels than metallothionein Ig. Of 13 different metals, only iron was altered, exhibiting an 81% decrease in old versus young lenses.

Conclusions: Induction of metallothioneins and alpha-crystallin/small heat shock proteins by different metals indicates the presence of metal-specific lens regulatory pathways that are likely to be involved in protection against metal-associated stresses.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aged
  • Aging / physiology*
  • Cadmium / pharmacology
  • Cells, Cultured
  • Copper / pharmacology
  • Epithelial Cells / chemistry
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Heat-Shock Proteins / biosynthesis*
  • Heat-Shock Proteins / genetics
  • Humans
  • Lens, Crystalline / chemistry
  • Lens, Crystalline / drug effects*
  • Lens, Crystalline / metabolism
  • Metallothionein / biosynthesis*
  • Metallothionein / genetics
  • Metals / analysis
  • Metals / pharmacology*
  • Middle Aged
  • Reverse Transcriptase Polymerase Chain Reaction
  • Zinc / pharmacology
  • alpha-Crystallins / biosynthesis*
  • alpha-Crystallins / genetics

Substances

  • Heat-Shock Proteins
  • Metals
  • alpha-Crystallins
  • Cadmium
  • Copper
  • Metallothionein
  • Zinc