Role of sodium in intracellular calcium elevation and leukotriene B4 formation by receptor-mediated activation of human neutrophils

Biochem Pharmacol. 2004 Jan 15;67(2):385-93. doi: 10.1016/j.bcp.2003.09.019.

Abstract

The role of Na(+) and Na(+) exchangers in intracellular Ca(2+) elevation and leukotriene B(4) (LTBs) formation was investigated in granulocyte macrophage colony-stimulating factor (GM-CSF)-primed, fMLP-stimulated human neutrophils. Isotonic substitution of extracellular Na(+) with N-methyl-D-glucamine(+) (NMDG(+)) resulted in over 85% inhibition of the LTBs generation observed (from 14.1+/-0.9pmol/10(6) neutrophils to 1.7+/-1.0pmol/10(6) neutrophils at 0.3 microM fMLP). Isotonic substitution of Na(+) with NMDG(+) also induced a significant inhibition of fMLP-induced rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) (from 2.17- to 0.78-fold increase over basal levels). Pretreatment with an inhibitor of the Na(+)/Ca(2+) exchanger (benzamil) did not inhibit either [Ca(2+)](i) rise or LTBs production, indicating that the observed effects of extracellular Na(+)-deprivation were unrelated to the Na(+)/Ca(2+) exchanger in receptor-mediated Ca(2+) influx, as previously hypothesized. LTBs production by thapsigargin-activated neutrophils was not affected by Na(+) depletion, but was totally abolished in the presence of EGTA, suggesting that store depletion-driven extracellular Ca(2+) influx is required for leukotriene synthesis and that this process is independent of Na(+)-deprivation. Exposure to Na(+)-free medium for the time of GM-CSF priming led to a significant decrease of intracellular pH values, suggesting a role of the Na(+)/H(+) exchanger in intracellular Na(+) depletion. Reducing the time of Na(+)-deprivation totally reversed the observed effect on LTBs production, resulting in enhanced, rather than inhibited, formation of LTBs. These results indicate that LTBs generation and [Ca(2+)](i) rise in human neutrophils primed by GM-CSF and stimulated with fMLP is dependent on intracellular Na(+) concentration, and, at variance with previously published results, unrelated to the Ca(2+) influx through the Na(+)/Ca(2+) exchanger.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Calcium / metabolism*
  • Cells, Cultured
  • Humans
  • Hydrogen-Ion Concentration
  • Leukotriene B4 / biosynthesis*
  • Neutrophils / metabolism*
  • Sodium / physiology*
  • Sodium-Hydrogen Exchangers / antagonists & inhibitors

Substances

  • Sodium-Hydrogen Exchangers
  • Leukotriene B4
  • Sodium
  • Calcium