Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source

Cells Tissues Organs. 2004;178(1):2-12. doi: 10.1159/000081088.

Abstract

Adult bone marrow contains mesenchymal stem cells (bone marrow-derived mesenchymal stem cells; BMSCs) which contribute to the generation of mesenchymal tissue such as bone, cartilage, muscle and adipose. However, using bone marrow as a source of stem cells has the limitation of a low cell number. An alternate source of adult stem cells that could be obtained in large quantities, under local anesthesia, with minimal discomfort would be advantageous. Human adipose tissue obtained by liposuction was processed to obtain a fibroblast-like population of cells or adipose tissue-derived stromal cells (ATSCs). In this study, we compared the osteogenic differentiation of ATSCs with that of BMSCs. Both cell types were cultured in atelocollagen honeycomb-shaped scaffolds with a membrane seal (ACHMS scaffold) for three-dimensional culturing in a specific osteogenic induction medium. Optimal osteogenic differentiation in both cell types, as determined by alkaline phosphatase cytochemistry, secretion of osteocalcin, mineral (calcium phosphate) deposition and scanning electron microscopy, was obtained with the same three-dimensional culture. Furthermore, osteoblastic lining in vivo was examined using ATSC-seeded or BMSC-seeded scaffolds in nude mice. The present results show that ATSCs have a similar ability to differentiate into osteoblasts to that of BMSCs.

MeSH terms

  • Adipocytes / cytology
  • Adipose Tissue / cytology*
  • Adult
  • Alkaline Phosphatase / analysis
  • Animals
  • Cell Lineage
  • Cell Proliferation
  • Cells, Cultured
  • Female
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Mice
  • Osteoblasts / cytology*
  • Osteocalcin / analysis
  • Osteogenesis*
  • Stem Cells / cytology*
  • Stem Cells / physiology
  • Stromal Cells / chemistry
  • Stromal Cells / cytology

Substances

  • Osteocalcin
  • Alkaline Phosphatase