The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice

J Pharm Sci. 2005 Jun;94(6):1216-25. doi: 10.1002/jps.20344.

Abstract

Insufficient concentrations of protease inhibitors such as nelfinavir may reduce the effectiveness of HIV dementia treatment. The efflux transporter mdr1 product P-glycoprotein (P-gp) has been demonstrated to play a role in limiting nelfinavir brain levels. The goal of this study was to compare the effect of GF120918 (10 mg/kg, IV), a P-gp inhibitor, on intravenous nelfinavir (10 mg/kg) in vivo disposition and tissue penetration in P-gp-competent mdr1a/1b (+/+) mice versus P-gp double knockout mdr1a/1b (-/-) mice. Intravenous administration with the P-gp inhibitor GF120918 to mdr1a/1b (+/+) mice increased nelfinavir concentrations over a range of 2.3- to 27-fold, whereas nelfinavir distribution in mdr1a/1b (-/-) mice was 2- to 16-fold higher than that in their wild counterparts. Nelfinavir levels after GF120918 coadministration were higher in the heart, liver, and kidneys than those detected with mdr1a/1b knockout mice. In contrast, mdr1a/1b knockout mice exhibited higher nelfinavir levels in the brain (16.1-fold vs. 8.9-fold increase) and spleen (4.1-fold vs. 2.3-fold increase) compared to pharmacological inhibition with GF120918 in wild mice. Most notably, GF120918 provided tissue-specific effects in mdr1a/1b knockout mice with enhanced (p < 0.05) drug accumulation in the brain ( approximately 21-fold) and heart (3.3-fold). Our results suggest mdr1a/1b-independant mechanisms may also contribute to nelfinavir tissue distribution in mice.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / physiology*
  • Acridines / pharmacology
  • Animals
  • Brain / metabolism*
  • HIV Protease Inhibitors / pharmacokinetics*
  • Male
  • Mice
  • Mice, Knockout
  • Nelfinavir / pharmacokinetics*
  • Tetrahydroisoquinolines / pharmacology
  • Tissue Distribution

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Acridines
  • HIV Protease Inhibitors
  • Tetrahydroisoquinolines
  • Nelfinavir
  • Elacridar