Genome evolution in bacteria: order beneath chaos

Curr Opin Microbiol. 2005 Oct;8(5):572-8. doi: 10.1016/j.mib.2005.08.005.

Abstract

Bacterial genomes have been viewed as collections of genes, with each gene and genome evolving more-or-less independently through the acquisition of mutational changes. This historical view has been overturned by the finding that genomes of even closely-related taxa differ widely in gene content. Yet, genomes are more than ever-shuffling collections of genes. Some genes within a genome are more transient than others, conferring a layer of phenotypic lability over a core of genotypic stability; this core decreases in size as the taxa included become increasingly diverse. In addition, some lineages no longer experience high rates of gene turnover, and gene content alters primarily through slow rates of gene loss. More importantly, the cell and molecular biology of the bacterial cell imposes constraints on chromosome composition, maintaining a stable architecture in the face of gene turnover. As a result, genomes reflect the sum of processes that introduce variability, which is then arbitrated by processes that maintain stability.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Bacteria / classification
  • Bacteria / genetics
  • Evolution, Molecular*
  • Gene Transfer, Horizontal
  • Genome, Bacterial*
  • Recombination, Genetic
  • Sequence Deletion