Observation of increased ion cyclotron resonance signal duration through electric field perturbations

Anal Chem. 2005 Sep 15;77(18):5973-81. doi: 10.1021/ac050606b.

Abstract

Ion motion in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is complex and the subject of ongoing theoretical and experimental studies. Two predominant pathways for the loss of ICR signals are thought to include damping of cyclotron motion, in which ions lose kinetic energy and radially damp toward the center of the ICR cell, and dephasing of ion coherence, in which ions of like cyclotron frequency become distributed out of phase at similar cyclotron radii. Both mechanisms result in the loss of induced ion image current in FTICR-MS measurements and are normally inseparable during time-domain signal analysis. For conventional ICR measurements which take advantage of ion ensembles, maximization of the ion population size and density can produce the desired effect of increasing phase coherence of ions during cyclotron motion. However, this approach also presents the risk of coalescence of ion packets of similar frequencies. In general, ICR researchers in the past have lacked the tools necessary to distinguish or independently control dephasing and damping mechanisms for ICR signal loss. Nonetheless, the ability to impart greater phase coherence of ions in ICR measurements will allow significant advances in FTICR-MS research by improving the current understanding of ICR signal loss contributions of dephasing and damping of ion ensembles, increasing overall time-domain signal length, and possibly, resulting in more routine ultrahigh resolution measurements. The results presented here demonstrate the ability to employ a high density electron beam to perturb electric fields within the ICR cell during detection of cyclotron motion, in an approach we call electron-promoted ion coherence (EPIC). As such, EPIC reduces ICR signal degradation through loss of phase coherence, and much longer time-domain signals can be obtained. Our results demonstrate that time-domain signals can be extended by more than a factor of 4 with the implementation of EPIC, as compared to conventional experiments with otherwise identical conditions. The application of EPIC has also been observed to reduce the appearance of peak coalescence. These capabilities are not yet fully optimized nor fully understood in terms of the complex physics that underlies the enhancement. However, the enhanced time-domain signals can result in improved resolution in frequency-domain signals, and as such, this result is important for more efficient utilization of FTICR-MS. High resolution and accurate mass analysis are prime motivating factors in the application of advanced FTICR technology. We believe the approach presented here and derivatives from it may have significant benefit in future applications of advanced FTICR technology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bradykinin / chemistry
  • Cyclotrons*
  • Electricity*
  • Ions / chemistry*
  • Mass Spectrometry
  • Ubiquitin / chemistry

Substances

  • Ions
  • Ubiquitin
  • Bradykinin