A flexible docking procedure for the exploration of peptide binding selectivity to known structures and homology models of PDZ domains

J Am Chem Soc. 2005 Oct 12;127(40):14072-9. doi: 10.1021/ja054195s.

Abstract

PDZ domains are important scaffolding modules that typically bind to the C-termini of their interaction partners. Several structures of such complexes have been solved, revealing a conserved binding site in the PDZ domain and an extended conformation of the bound peptide. A compendium of information regarding PDZ complexes demonstrates that dissimilar C-terminal peptides bind to the same PDZ domain, and different PDZ domains can bind the same peptides. A detailed understanding of the PDZ-peptide recognition is needed to elucidate this complexity. To this end, we have designed a family of docking protocols for PDZ domains (termed PDZ-DocScheme) that is based on simulated annealing molecular dynamics and rotamer optimization, and is applicable to the docking of long peptides (20-40 rotatable bonds) to both known PDZ structures and to the more complicated problem of homology models of these domains. The resulting protocol reproduces the structures of PDZ complexes with peptides 4-8 amino acids long within 1-2 A from the experimental structure when the docking is performed to the original structure. If the structure of the target PDZ domain is an apo structure or a homology model, the docking protocol yields structures within 3 A in 9 out of 12 test cases. The automated docking procedure PDZ-DocScheme can serve in the generation of a structural context for validation of PDZ domain specificity from mutagenesis and ligand binding data.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Models, Molecular
  • Peptides / chemistry*
  • Protein Binding
  • Protein Conformation
  • Protein Structure, Tertiary

Substances

  • Peptides