Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation

EMBO J. 1989 May;8(5):1331-40. doi: 10.1002/j.1460-2075.1989.tb03513.x.

Abstract

We show that expression of common nodulation genes in Rhizobium meliloti is under positive as well as negative control. A repressor protein was found to be involved in the negative control of nod gene expression. Whereas the activator NodD protein binds to the conserved cis-regulatory element (nod-box) required for coordinated regulation of nod genes, the repressor binds to the overlapping nodD1 and nodA promoters, at the RNA polymerase binding site. A model depicting the possible interaction of the plant-derived nod gene inducer (luteolin), the NodD and the repressor with the nod promoter elements is presented. Mutants lacking the repressor exhibited delayed nodulation phenotype, indicating that fine tuning of nod gene expression is required for optimal nodulation of the plant host.