Different types of blockers of the intermediate-conductance outwardly rectifying chloride channel in epithelia

Pflugers Arch. 1991 Jul;418(6):556-63. doi: 10.1007/BF00370571.

Abstract

Epithelial chloride channels can be blocked by various inhibitors, which show considerable differences in their molecular structure. In the present patch-clamp study, we compared different blockers of one type of epithelial Cl- channel with respect to their inhibitory potency. We applied the blockers to excised inside-out-or outside-out-oriented membrane patches of cultured HT29 colon carcinoma and respiratory epithelial cells (REC) containing the outwardly rectifying intermediate-conductance (ICOR) chloride channel. Four types of inhibitory compounds were tested: stilbene disulphonate derivatives, indanyloxyacetic acid, amidine, and arylaminobenzoates. The concentrations for half-maximal inhibition (IC50) for the different channel blockers were (mumol/l): 4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulphonic acid 100; 4,4'-diisothiocyanato-stilbene-2,2'-disulphonic acid 80; indanyloxyacetic acid 9; 4,4'-dinitrostilbene-2,2'-disulphonic acid 8; amidine 8 and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) 0.9. All compounds, when applied to the cytosolic side of the channel, induced a flicker-type block of the ICOR Cl- channel at lower concentrations and a complete channel inhibition at higher concentrations. The inhibitory potency of NPPB was much higher when it was added to the external surface of the channel in outside-out-oriented membrane patches. At 1 mumol/l the inhibition was complete. All blocker effects were fully reversible. The probe with the highest affinity (NPPB) and a closely related compound 5-nitro-2-(3-phenylethylamino)-benzoate (NPEB) were used to construct macromolecular probes by linking these blockers to aminopolyethyleneglycol (PEG) or amino-ethyl-O-dextran (5 kDa).2+ These macromolecular NPPB and NPEB derivatives inhibited the ICOR Cl- channels only from the outside but had no effect on the cytosolic side.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amidines / pharmacology
  • Cells, Cultured
  • Chloride Channels
  • Electric Conductivity
  • Epithelium / drug effects
  • Epithelium / metabolism
  • Humans
  • Indans / pharmacology
  • Membrane Proteins / drug effects*
  • Membrane Proteins / metabolism
  • Molecular Probes
  • Nitrobenzoates / pharmacology
  • Stilbenes / pharmacology

Substances

  • Amidines
  • Chloride Channels
  • Indans
  • Membrane Proteins
  • Molecular Probes
  • Nitrobenzoates
  • Stilbenes
  • indanoxyacetic acid 94
  • 5-nitro-2-(3-phenylpropylamino)benzoic acid