Persistent dynamic attractors in activity patterns of cultured neuronal networks

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051907. doi: 10.1103/PhysRevE.73.051907. Epub 2006 May 11.

Abstract

Three remarkable features of the nervous system--complex spatiotemporal patterns, oscillations, and persistent activity--are fundamental to such diverse functions as stereotypical motor behavior, working memory, and awareness. Here we report that cultured cortical networks spontaneously generate a hierarchical structure of periodic activity with a strongly stereotyped population-wide spatiotemporal structure demonstrating all three fundamental properties in a recurring pattern. During these "superbursts," the firing sequence of the culture periodically converges to a dynamic attractor orbit. Precursors of oscillations and persistent activity have previously been reported as intrinsic properties of the neurons. However, complex spatiotemporal patterns that are coordinated in a large population of neurons and persist over several hours--and thus are capable of representing and preserving information--cannot be explained by known oscillatory properties of isolated neurons. Instead, the complexity of the observed spatiotemporal patterns implies large-scale self-organization of neurons interacting in a precise temporal order even in vitro, in cultures usually considered to have random connectivity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Biological Clocks / physiology
  • Cells, Cultured
  • Cerebral Cortex / physiology*
  • Computer Simulation
  • Models, Neurological*
  • Nerve Net / physiology*
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*
  • Pattern Recognition, Automated / methods
  • Rats
  • Synaptic Transmission / physiology*