Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria

J Immunol. 2006 Dec 15;177(12):8476-83. doi: 10.4049/jimmunol.177.12.8476.

Abstract

We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins
  • Bacteria / immunology*
  • Biological Transport
  • Cell Membrane Structures / immunology
  • Cell Membrane Structures / physiology*
  • Cell Membrane Structures / ultrastructure
  • Cell Movement
  • Cells, Cultured
  • Humans
  • Macrophages / cytology
  • Macrophages / immunology*
  • Macrophages / ultrastructure*
  • Microtubules
  • Phagocytosis*
  • Transport Vesicles

Substances

  • Actins