Functional characterization of a methionine gamma-lyase in Arabidopsis and its implication in an alternative to the reverse trans-sulfuration pathway

Plant Cell Physiol. 2007 Feb;48(2):232-42. doi: 10.1093/pcp/pcl055. Epub 2006 Dec 13.

Abstract

Methionine gamma-lyase (MGL) catalyzes the degradation of L-methionine to alpha-ketobutyrate, methanethiol and ammonia. The Arabidopsis (Arabidopsis thaliana) genome includes a single gene (At1g64660) encoding a protein (AtMGL) with approximately 35% identity to bacterial and protozoan MGLs. When overexpressed in Escherichia coli, AtMGL allowed growth on L-methionine as sole nitrogen source and conferred a high rate of methanethiol emission. The purified recombinant protein exhibited a spectrum typical of pyridoxal 5'-phosphate enzymes, and had high activity toward l-methionine, L-ethionine, L-homocysteine and seleno-L-methionine, but not L-cysteine. Quantitation of mRNA showed that the AtMGL gene is expressed in aerial organs and roots, and that its expression in leaves was increased 2.5-fold by growth on low sulfate medium. Emission of methanethiol from Arabidopsis plants supplied with 10 mM L-methionine was undetectable (<0.5 nmol min(-1) g(-1) FW), suggesting that AtMGL is not an important source of volatile methanethiol. Knocking out the AtMGL gene significantly increased leaf methionine content (9.2-fold) and leaf and root S-methylmethionine content (4.7- and 7-fold, respectively) under conditions of sulfate starvation, indicating that AtMGL carries a significant flux in vivo. In Arabidopsis plantlets fed L-[(35)S]methionine on a low sulfate medium, label was incorporated into protein-bound cysteine as well as methionine, but incorporation into cysteine was significantly (30%) less in the knockout mutant. These data indicate that plants possess an alternative to the reverse trans-sulfuration pathway (methionine-->homocysteine-->cystathionine-->cysteine) in which methanethiol is an intermediate.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis / enzymology*
  • Base Sequence
  • Carbon-Sulfur Lyases / chemistry
  • Carbon-Sulfur Lyases / genetics
  • Carbon-Sulfur Lyases / metabolism*
  • DNA Primers
  • DNA, Complementary
  • Escherichia coli / genetics
  • Molecular Sequence Data
  • Mutation
  • Nitrogen / metabolism
  • RNA, Messenger / genetics
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sequence Homology, Amino Acid
  • Sulfur / metabolism*

Substances

  • DNA Primers
  • DNA, Complementary
  • RNA, Messenger
  • Sulfur
  • Carbon-Sulfur Lyases
  • L-methionine gamma-lyase
  • Nitrogen