Controlling the false discovery rate with constraints: the Newman-Keuls test revisited

Biom J. 2007 Feb;49(1):136-43. doi: 10.1002/bimj.200610297.

Abstract

The Newman-Keuls (NK) procedure for testing all pairwise comparisons among a set of treatment means, introduced by Newman (1939) and in a slightly different form by Keuls (1952) was proposed as a reasonable way to alleviate the inflation of error rates when a large number of means are compared. It was proposed before the concepts of different types of multiple error rates were introduced by Tukey (1952a, b; 1953). Although it was popular in the 1950s and 1960s, once control of the familywise error rate (FWER) was accepted generally as an appropriate criterion in multiple testing, and it was realized that the NK procedure does not control the FWER at the nominal level at which it is performed, the procedure gradually fell out of favor. Recently, a more liberal criterion, control of the false discovery rate (FDR), has been proposed as more appropriate in some situations than FWER control. This paper notes that the NK procedure and a nonparametric extension controls the FWER within any set of homogeneous treatments. It proves that the extended procedure controls the FDR when there are well-separated clusters of homogeneous means and between-cluster test statistics are independent, and extensive simulation provides strong evidence that the original procedure controls the FDR under the same conditions and some dependent conditions when the clusters are not well-separated. Thus, the test has two desirable error-controlling properties, providing a compromise between FDR control with no subgroup FWER control and global FWER control. Yekutieli (2002) developed an FDR-controlling procedure for testing all pairwise differences among means, without any FWER-controlling criteria when there is more than one cluster. The empirica example in Yekutieli's paper was used to compare the Benjamini-Hochberg (1995) method with apparent FDR control in this context, Yekutieli's proposed method with proven FDR control, the Newman-Keuls method that controls FWER within equal clusters with apparent FDR control, and several methods that control FWER globally. The Newman-Keuls is shown to be intermediate in number of rejections to the FWER-controlling methods and the FDR-controlling methods in this example, although it is not always more conservative than the other FDR-controlling methods.

MeSH terms

  • Data Interpretation, Statistical*
  • Matched-Pair Analysis