Cone and rod cells have different target preferences in vitro as revealed by optical tweezers

Mol Vis. 2008 Apr 21:14:706-20.

Abstract

Purpose: When neural circuits are damaged in adulthood, regenerating and sprouting processes must distinguish appropriate targets to recreate the normal circuitry. We tested the ability of adult nerve cells to target specific cells in culture using the retina as a model system.

Methods: Under sterile culture conditions, retinal cells, isolated from tiger salamander retina, were micromanipulated with optical tweezers to create pairs of first-order photoreceptor cells with second- or third-order retinal neurons. The development of cell contact and presynaptic varicosities, the direction and amount of neuritic growth, and nerve cell polarity were assessed after seven days in vitro. Cultures were labeled for rod opsin to distinguish rod from cone cells and for the alpha subunit of the trimeric G protein Go (Go alpha) to identify cone-dominated and mixed rod-cone ON bipolar cells.

Results: Quantitative analysis of growth demonstrated that target preferences were cell-specific: Cone cells preferred second-order bipolar cells, whereas rod cells grew toward third-order neurons, which include amacrine and ganglion cells. In addition, when rod cells grew toward bipolar cells, they chose an abnormally high number of Go alpha-positive bipolar cells. These growth patterns were not affected by tweezers manipulation or the amount of growth. Cell orientation of the photoreceptor also did not affect preferences: Cells oriented away from dendritic processes could reorient their axonal pole toward the target cell.

Conclusions: Cone cells preferred normal partners, and rod cells preferred novel partners. These intrinsic preferences indicate that adult nerve cells can have differing capacities for targeting even if they come from the same cell class. Further,these differences may help explain the patterns of photoreceptor sprouting seen in retinal degeneration in which rod, but not cone, cells invade the inner retinal layers where third-order neurons are located.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Communication
  • Cell Movement
  • Cell Polarity
  • Cells, Cultured
  • Optical Tweezers*
  • Photoreceptor Cells, Vertebrate / cytology
  • Retinal Bipolar Cells / cytology
  • Retinal Cone Photoreceptor Cells / cytology*
  • Retinal Cone Photoreceptor Cells / physiology*
  • Retinal Rod Photoreceptor Cells / cytology*
  • Retinal Rod Photoreceptor Cells / physiology*
  • Urodela