Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of Photosystem II

Biochim Biophys Acta. 2008 Oct;1777(10):1263-7. doi: 10.1016/j.bbabio.2008.04.036. Epub 2008 Apr 29.

Abstract

In bright sunlight, the amount of energy harvested by plants exceeds the electron transport capacity of Photosystem II in the chloroplasts. The excess energy can lead to severe damage of the photosynthetic apparatus and to avoid this, part of the energy is thermally dissipated via a mechanism called non-photochemical quenching (NPQ). It has been found that LHCII, the major antenna complex of Photosystem II, is involved in this mechanism and it was proposed that its quenching site is formed by the cluster of strongly interacting pigments: chlorophylls 611 and 612 and lutein 620 [A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum, J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P. Horton and R. van Grondelle, Identification of a mechanism of photoprotective energy dissipation in higher plants, Nature 450 (2007) 575-578.]. In the present work we have investigated the interactions between the pigments in this cluster not only for LHCII, but also for the homologous minor antenna complexes CP24, CP26 and CP29. Use was made of wild-type and mutated reconstituted complexes that were analyzed with (low-temperature) absorption and circular-dichroism spectroscopy as well as by biochemical methods. The pigments show strong interactions that lead to highly specific spectroscopic properties that appear to be identical for LHCII, CP26 and CP29. The interactions are similar but not identical for CP24. It is concluded that if the 611/612/620 domain is responsible for the quenching in LHCII, then all these antenna complexes are prepared to act as a quencher. This can explain the finding that none of the Lhcb complexes seems to be strictly required for NPQ while, in the absence of all of them, NPQ is abolished.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / chemistry
  • Arabidopsis / genetics
  • Arabidopsis / metabolism
  • Chloroplasts / metabolism
  • Electron Transport / physiology
  • Light*
  • Light-Harvesting Protein Complexes / chemistry
  • Light-Harvesting Protein Complexes / metabolism*
  • Models, Molecular
  • Molecular Structure
  • Mutagenesis, Site-Directed
  • Photosystem II Protein Complex / chemistry
  • Photosystem II Protein Complex / metabolism*
  • Plant Proteins / chemistry
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Zea mays / chemistry
  • Zea mays / genetics
  • Zea mays / metabolism

Substances

  • Light-Harvesting Protein Complexes
  • Photosystem II Protein Complex
  • Plant Proteins