The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: role of H(2)O(2) in NF-kappaB activation

Free Radic Biol Med. 2008 Sep 15;45(6):885-96. doi: 10.1016/j.freeradbiomed.2008.06.019. Epub 2008 Jun 27.

Abstract

Reactive oxygen species (ROS) have been implicated in the regulation of NF-kappaB activation, which plays an important role in inflammation and cell survival. However, the molecular mechanisms of ROS in NF-kappaB activation remain poorly defined. We found that the non-provitamin A carotenoid, lutein, decreased intracellular H(2)O(2) accumulation by scavenging superoxide and H(2)O(2) and the NF-kappaB-regulated inflammatory genes, iNOS, TNF-alpha, IL-1beta, and cyclooxygenase-2, in lipopolysaccharide (LPS)-stimulated macrophages. Lutein inhibited LPS-induced NF-kappaB activation, which highly correlated with its inhibitory effect on LPS-induced IkappaB kinase (IKK) activation, IkappaB degradation, nuclear translocation of NF-kappaB, and binding of NF-kappaB to the kappaB motif of the iNOS promoter. This compound inhibited LPS- and H(2)O(2)-induced increases in phosphatidylinositol 3-kinase (PI3K) activity, PTEN inactivation, NF-kappaB-inducing kinase (NIK), and Akt phosphorylation, which are all upstream of IKK activation, but did not affect the interaction between Toll-like receptor 4 and MyD88 and the activation of mitogen-activated protein kinases. The NADPH oxidase inhibitor apocynin and gp91(phox) deletion reduced the LPS-induced NF-kappaB signaling pathway as lutein did. Moreover, lutein treatment and gp91(phox) deletion decreased the expressional levels of the inflammatory genes in vivo and protected mice from LPS-induced lethality. Our data suggest that H(2)O(2) modulates IKK-dependent NF-kappaB activation by promoting the redox-sensitive activation of the PI3K/PTEN/Akt and NIK/IKK pathways. These findings further provide new insights into the pathophysiological role of intracellular H(2)O(2) in the NF-kappaB signal pathway and inflammatory process.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / pharmacology
  • Base Sequence
  • Chromatin Immunoprecipitation
  • DNA Primers
  • Gene Expression Regulation / drug effects*
  • Gene Expression Regulation / physiology
  • Hydrogen Peroxide / pharmacology*
  • Lutein / pharmacology*
  • Macrophages, Peritoneal / drug effects
  • Macrophages, Peritoneal / enzymology
  • Macrophages, Peritoneal / metabolism
  • Mice
  • NF-kappa B / antagonists & inhibitors*
  • NF-kappa B / metabolism
  • NF-kappa B / physiology
  • Oxidation-Reduction
  • PTEN Phosphohydrolase / metabolism*
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • Anti-Inflammatory Agents
  • DNA Primers
  • NF-kappa B
  • Hydrogen Peroxide
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • Pten protein, mouse
  • Lutein