Efficient term development of vitrified ferret embryos using a novel pipette chamber technique

Biol Reprod. 2008 Nov;79(5):832-40. doi: 10.1095/biolreprod.107.067371. Epub 2008 Jul 16.

Abstract

Development of an efficient cryopreservation technique for the domestic ferret is key for the long-term maintenance of valuable genetic specimens of this species and for the conservation of related endangered species. Unfortunately, current cryopreservation procedures, such as slow-rate freezing and vitrification with open pulled straws, are inefficient. In this report, we describe a pipette tip-based vitrification method that significantly improves the development of thawed ferret embryos following embryo transfer (ET). Ferret embryos at the morula (MR), compact morula (CM), and early blastocyst (EB) stages were vitrified using an Eppendorf microloader pipette tip as the chamber vessel. The rate of in vitro development was significantly (P < 0.05) higher among embryos vitrified at the CM (93.6%) and EB (100%) stages relative to those vitrified at the MR stages (58.7%). No significant developmental differences were observed when comparing CM and EB vitrified embryos with nonvitrified control CM (100%) and EB (100%) embryos. In addition, few differences in the ultrastructure of intracellular lipid droplets or in microfilament structure were observed between control embryos and embryos vitrified at any developmental stage. Vitrified-thawed CM/EB embryos cultured for 2 or 16 h before ET resulted in live birth rates of 71.3% and 77.4%, respectively. These rates were not significantly different from the control live birth rate (79.2%). However, culture for 32 h (25%) or 48 h (7.8%) after vitrification significantly reduced the rate of live births. These data indicate that the pipette chamber vitrification technique significantly improves the live birth rate of transferred ferret embryos relative to current state-of-the-art methods.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / ultrastructure
  • Animals
  • Cryopreservation*
  • Embryo Transfer / instrumentation
  • Embryo Transfer / methods*
  • Embryo, Mammalian* / chemistry
  • Embryo, Mammalian* / ultrastructure
  • Embryonic Development*
  • Female
  • Ferrets / embryology*
  • Lipids / analysis
  • Male

Substances

  • Lipids