Tocopheryl Polyethylene Glycol Succinate as a Safe, Antioxidant Surfactant for Processing Carbon Nanotubes and Fullerenes

Carbon N Y. 2007 Nov;45(13):2463-2470. doi: 10.1016/j.carbon.2007.08.035.

Abstract

This work investigates the physical interactions between carbon nanomaterials and tocopheryl polyethylene glycol succinate (TPGS). TPGS is a synthetic amphiphile that undergoes enzymatic cleavage to deliver the lipophilic antioxidant, alpha-tocopherol (vitamin E) to cell membranes, and is FDA approved as a water-soluble vitamin E nutritional supplement and drug delivery vehicle. Here we show that TPGS 1000 is capable of dispersing multi-wall and single-wall carbon nanotubes in aqueous media, and for multiwall tubes is more effective than the commonly used non-ionic surfactant Triton X-100. TPGS is also capable of solubilizing C(60) in aqueous phases by dissolving fullerene in the core of its spherical micelles. Drying of these solutions leads to fullerene/TPGS phase separation and the self-assembly of highly ordered asymmetric nanoparticles, with fullerene nanocrystals attached to the hydrophobic end of crystalline TPGS nanobrushes. The article discusses surface charge, colloidal stability, and the potential applications of TPGS as a safe surfactant for "green" processing of carbon nanomaterials.