Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water

Langmuir. 2009 Jul 7;25(13):7675-85. doi: 10.1021/la900323n.

Abstract

A systematic study of the degree of molecular ordering and swelling of different nanocellulose model films has been conducted. Crystalline cellulose II surfaces were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water or by using the Langmuir-Schaefer (LS) technique. Amorphous cellulose films were also prepared by spin-coating of a precursor cellulose solution onto oxidized silicon wafers. Crystalline cellulose I surfaces were prepared by spin-coating wafers with aqueous suspensions of sulfate-stabilized cellulose I nanocrystals and low-charged microfibrillated cellulose (LC-MFC). In addition, a dispersion of high-charged MFC was used for the buildup of polyelectrolyte multilayers with polyetheyleneimine on silica with the aid of the layer-by-layer (LbL) technique. These preparation methods produced smooth thin films on the nanometer scale suitable for X-ray diffraction and swelling measurements. The surface morphology and thickness of the cellulose films were characterized in detail by atomic force microscopy (AFM) and ellipsometry measurements, respectively. To determine the surface energy of the cellulose surfaces, that is, their ability to engage in different interactions with different materials, they were characterized through contact angle measurements against water, glycerol, and methylene iodide. Small incidence angle X-ray diffraction revealed that the nanocrystal and MFC films exhibited a cellulose I crystal structure and that the films prepared from N-methylmorpholine-N-oxide (NMMO), LiCl/DMAc solutions, using the LS technique, possessed a cellulose II structure. The degree of crystalline ordering was highest in the nanocrystal films (approximately 87%), whereas the MFC, NMMO, and LS films exhibited a degree of crystallinity of about 60%. The N,N-dimethylacetamide (DMAc)/LiCl film possessed very low crystalline ordering (<15%). It was also established that the films had different mesostructures, that is, structures around 10 nm, depending on the preparation conditions. The LS and LiCl/DMAc films are smooth without any clear mesostructure, whereas the other films have a clear mesostructure in which the dimensions are dependent on the size of the nanocrystals, fibrillar cellulose, and electrostatic charge of the MFC. The swelling of the films was studied using a quartz crystal microbalance with dissipation. To understand the swelling properties of the films, it was necessary to consider both the difference in crystalline ordering and the difference in mesostructure of the films.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cellulose / chemistry*
  • Crystallization
  • Microscopy, Atomic Force
  • Models, Biological
  • Nanoparticles / chemistry*
  • Surface Properties
  • Water / chemistry*
  • X-Ray Diffraction

Substances

  • Water
  • Cellulose