Substantial energy expenditure for locomotion in ciliates verified by means of simultaneous measurement of oxygen consumption rate and swimming speed

J Exp Biol. 2009 Jun;212(Pt 12):1819-24. doi: 10.1242/jeb.028894.

Abstract

In order to characterize the energy expenditure of Paramecium, we simultaneously measured the oxygen consumption rate, using an optic fluorescence oxygen sensor, and the swimming speed, which was evaluated by the optical slice method. The standard metabolic rate (SMR, the rate of energy consumption exclusively for physiological activities other than locomotion) was estimated to be 1.18x10(-6) J h(-1) cell(-1) by extrapolating the oxygen consumption rate into one at zero swimming speed. It was about 30% of the total energy consumed by the cell swimming at a mean speed of 1 mm s(-1), indicating that a large amount of the metabolic energy (about 70% of the total) is consumed for propulsive activity only. The mechanical power liberated to the environment by swimming Paramecium was calculated on the basis of Stokes' law. This power, termed Stokes power, was 2.2x10(-9) J h(-1) cell(-1), indicating extremely low efficiency (0.078%) in the conversion of metabolic power to propulsion. Analysis of the cost of transport (COT, the energy expenditure for translocation per units of mass and distance) revealed that the efficiency of energy expenditure in swimming increases with speed rather than having an optimum value within a wide range of forced swimming, as is generally found in fish swimming. These characteristics of energy expenditure would be unique to microorganisms, including Paramecium, living in a viscous environment where large dissipation of the kinetic energy is inevitable due to the interaction with the surrounding water.

MeSH terms

  • Animals
  • Energy Metabolism*
  • Kinetics
  • Linear Models
  • Oxygen Consumption*
  • Paramecium / physiology*
  • Regression Analysis
  • Swimming / physiology