Mesenchymal stem cells as a gene therapy carrier for treatment of fibrosarcoma

Cytotherapy. 2009;11(5):516-26. doi: 10.1080/14653240902960429.

Abstract

Background aims: Cell-based gene therapy is an alternative to viral and non-viral gene therapy. Emerging evidence suggests that mesenchymal stem cells (MSC) are able to migrate to sites of tissue injury and have immunosuppressive properties that may be useful in targeted gene therapy for sustained specific tissue engraftment.

Methods: In this study, we injected intravenously (i.v.) 1x10(6) MSC, isolated from green fluorescent protein (GFP) transgenic rats, into Rif-1 fibrosarcoma-bearing C3H/HeN mice. The MSC had been infected using a lentiviral vector to express stably the luciferase reporter gene (MSC-GFP-luci). An in vivo imaging system (IVIS 200) and Western blotting techniques were used to detect the distribution of MSC-GFP-luci in tumor-bearing animals.

Results: We observed that xenogenic MSC selectively migrated to the tumor site, proliferated and expressed the exogenous gene in subcutaneous fibrosarcoma transplants. No MSC distribution was detected in other organs, such as the liver, spleen, colon and kidney. We further showed that the FGF2/FGFR pathways may play a role in the directional movement of MSC to the Rif-1 fibrosarcoma. We performed in vitro co-culture and in vivo tumor growth analysis, showing that MSC did not affect the proliferation of Rif-1 cells and fibrosarcoma growth compared with an untreated control group. Finally, we demonstrated that the xenogenic MSC stably expressing inducible nitric oxide synthase (iNOS) protein transferred by a lentivirus-based system had a significant inhibitory effect on the growth of Rif-1 tumors compared with MSC alone and the non-treatment control group.

Conclusions: iNOS delivered by genetically modified iNOS-MSC showed a significant anti-tumor effect both in vitro and in vivo. MSC may be used as a target gene delivery vehicle for the treatment of fibrosarcoma and other tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Fibroblast Growth Factor 2 / pharmacology
  • Fibrosarcoma / genetics*
  • Fibrosarcoma / therapy*
  • Genetic Therapy*
  • Green Fluorescent Proteins / metabolism
  • Humans
  • Mesenchymal Stem Cell Transplantation
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / enzymology
  • Mice
  • Neoplasm Transplantation
  • Nitric Oxide Synthase Type II / metabolism
  • Rats
  • Subcutaneous Tissue / drug effects
  • Subcutaneous Tissue / pathology
  • Transplantation, Heterologous

Substances

  • Fibroblast Growth Factor 2
  • Green Fluorescent Proteins
  • Nitric Oxide Synthase Type II