Flowering regulation by tissue specific functions of photoreceptors

Plant Signal Behav. 2008 Jan;3(1):47-8. doi: 10.4161/psb.3.1.4863.

Abstract

Flowering is one of the most important steps in a plant life cycle. Plants utilize light as an informational source to determine the timing of flowering. In Arabidopsis, phytochrome A (phyA), phyB and cryptochrome2 (cry2) are major photoreceptors that regulate flowering. These photoreceptors perceive light stimuli by leaves for the regulation of flowering. A leaf is an organ consisting of different tissues such as epidermis, mesophyll and vascular bundles. In the present study, we examined in which tissue the light signals are perceived and how those signals are integrated within a leaf to regulate flowering. For this purpose, we established transgenic Arabidopsis lines that expressed a phyB-green fluorescent protein (GFP) fusion protein or a cry2-GFP fusion protein in organ/tissue-specific manners. Consequently, phyB was shown to perceive light stimuli in mesophyll. By contrast, cry2 functioned only in vascular bundles. We further confirmed that both phyB-GFP and cry2-GFP regulated flowering by altering the expression of a key flowering gene, FT, in vascular bundles. In summary, perception sites for different spectra of light are spatially separated within a leaf and the signals are integrated through the inter-tissue communication.

Keywords: cryptochrome; flowering; inter-tissue signal; light; photoreceptor; phytochrome.