The fabrication of photosensitive self-assembly Au nanoparticles embedded in silica nanofibers by electrospinning

J Colloid Interface Sci. 2009 Dec 15;340(2):291-7. doi: 10.1016/j.jcis.2009.09.011. Epub 2009 Sep 16.

Abstract

In this study, we demonstrated a simple, efficient, and low-cost method to fabricate large-area self-assembly Au nanoparticles (AuNPs) encapsulated within silica nanofibers (Au/SiO(2)). The method is based on electrospinning and thermal decomposition of hybrid nanofibers prepared from the solution of tetraethylorthosilicate (TEOS), polyvinylpyrrolidone (PVP) and AuNPs. This study employed the electrospinning technique for the first time as a successful method for preparing a self-organized AuNP peapod chain in a silica nanofiber matrix, under mild conditions. It has the advantage of easily controlling the diameters of the silica nanofibers as well as the concentration of the AuNPs in the spinning solution. The Au/SiO(2) hybrid nanofibers fabricated by this method exhibited an obvious photoelectric response under the illumination wavelength around the Au/SiO(2) nanofibers surface plasmon resonance (SPR) absorption band, whereas no photoelectric response was observed for the pure silica fibers. The excellent characteristics of photoelectric response suggest that the electrospinning technique has a great potential for large-scale fabrication of functional nanofiber devices. The ability of coupling light responses into the nanosystems dependent on metallic nanoparticle SPR opens up new prospects for the construction of nanoscale waveguiding devices, sensors and optoelectronics.