Cutaneous afferents from the monkeys fingers: responses to tangential and normal forces

J Neurophysiol. 2010 Feb;103(2):950-61. doi: 10.1152/jn.00502.2009. Epub 2009 Dec 2.

Abstract

Control of tangential force plays a key role in everyday manipulations. In anesthetized monkeys, forces tangential to the skin were applied at a range of magnitudes comparable to those used in routine manipulations and in eight different directions. The paradigm used enabled separation of responses to tangential force from responses to the background normal force. For slowly adapting type I (SAI) afferents, tangential force responses ranged from excitatory through no response to suppression, with both a static and dynamic component. For fast adapting type I (FAI) afferents, responses were dynamic and excitatory only. Responses of both afferent types were scaled by tangential force magnitude, elucidating the neural basis for previous human psychophysical scaling data. Most afferents were direction selective with a range of preferred directions and a range in sharpness of tuning. Both the preferred direction and the degree of tuning were independent of the background normal force. Preferred directions were distributed uniformly over 360 degrees for SAI afferents, but for FAI afferents they were biased toward the proximo-ulnar direction. Afferents from all over the glabrous skin of the distal segment of the finger responded; there was no evident relationship between the position of an afferent's receptive field on the finger and its preferred direction or its degree of tuning. Nor were preferred directions biased either toward or away from the receptive field center. In response to the relatively large normal forces, some afferents saturated and others did not, regardless of the positions of their receptive fields. Total afferent response matched human psychophysical scaling functions for normal force.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Afferent Pathways / physiology*
  • Animals
  • Fingers / innervation*
  • Fingers / physiology*
  • Macaca nemestrina
  • Mechanoreceptors / physiology*
  • Physical Stimulation / methods
  • Sensory Thresholds / physiology
  • Skin / innervation*
  • Skin Physiological Phenomena*
  • Stress, Mechanical
  • Touch / physiology*