Antiviral prevention of sepsis induced cytomegalovirus reactivation in immunocompetent mice

Antiviral Res. 2010 Mar;85(3):496-503. doi: 10.1016/j.antiviral.2009.12.004. Epub 2009 Dec 11.

Abstract

Introduction: Immunocompetent patients can reactivate latent cytomegalovirus (CMV) during critical illness and reactivation is associated with significantly worse outcomes. Prior to clinical trials in humans to prove causality, we sought to determine an optimal antiviral treatment strategy.

Methods: Mice latently infected with murine CMV (MCMV) received a septic reactivation trigger and were randomized to receive one of four ganciclovir regimens or saline. Lungs were evaluated for viral transcriptional reactivation and fibrosis after each regimen. Influences of ganciclovir on early sepsis-induced pulmonary inflammation and T-cell activation were studied after sepsis induction.

Results: All ganciclovir regimens reduced measurable MCMV transcriptional reactivation, and 10mg/day for 7 or 21 days was most effective. Lower dose (5mg/kg/day) or delayed therapy was associated with significant breakthrough reactivation. Higher doses of ganciclovir given early were associated with the lowest incidence of pulmonary fibrosis, and delay of therapy for 1 week was associated with significantly worse pulmonary fibrosis. Although bacterial sepsis induced activation of MCMV-specific pulmonary T-cells, this activation was not influenced by ganciclovir.

Conclusion: These results suggest that antiviral treatment trials in humans should use 10mg/kg/day ganciclovir administered as early as possible in at-risk patients to minimize reactivation events and associated pulmonary injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiviral Agents / administration & dosage*
  • Cytomegalovirus Infections / prevention & control*
  • Cytomegalovirus Infections / virology
  • Disease Models, Animal
  • Female
  • Ganciclovir / administration & dosage*
  • Humans
  • Lung / pathology
  • Mice
  • Mice, Inbred BALB C
  • Muromegalovirus / physiology*
  • Random Allocation
  • Sepsis / complications*
  • Virus Activation*

Substances

  • Antiviral Agents
  • Ganciclovir